Geochemical properties, heavy metals and soil microbial community during revegetation process in a production Pb-Zn tailings

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 2|浏览2
暂无评分
摘要
Lead-zinc (Pb-Zn) tailings pose a significant environmental threat from heavy metals (HMs) contamination. Revegetation is considered as a green path for HM remediation. However, the interplay between HM transport processes and soil microbial community in Pb-Zn tailings (especially those in production) remain unclear. This study investigated the spatial distribution of HMs as well as the crucial roles of the soil microbial community (i. e., structure, richness, and diversity) during a three-year revegetation of production Pb-Zn tailings in northern Guangdong province, China. Prolonged tailings stockpiling exacerbated Pb contamination, elevating concentrations (from 10.11 to 11.53 g/kg) in long-term weathering. However, revegetation effectively alleviated Pb, reducing its concentrations of 9.81 g/kg. Through 16 S rRNA gene amplicon sequencing, the dominant genera shifted from Weissella (44%) to Thiobacillus (17%) and then to Pseudomonas (comprising 44% of the sequences) during the revegetation process. The structural equation model suggested that Pseudomonas, with its potential to transform bioavailable Pb into a more stable form, emerged as a potential Pb remediator. This study provides essential evidence of HMs contamination and microbial community dynamics during Pb-Zn tailings revegetation, contributing to the development of sustainable microbial technologies for tailings management.
更多
查看译文
关键词
Lead -zinc tailings,Heavy metal contamination,Ecological restoration,Soil remediation,Soil microbial community
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要