谷歌Chrome浏览器插件
订阅小程序
在清言上使用

DNA methylation regulates biosynthesis of tanshinones and phenolic acids during growth of Salvia miltiorrhiza

PLANT PHYSIOLOGY(2024)

引用 0|浏览26
暂无评分
摘要
DNA methylation plays a crucial role in the regulation of plant growth and the biosynthesis of secondary metabolites. Danshen (Salvia miltiorrhiza) is a valuable Chinese herbal medicine commonly used to treat cardiovascular diseases; its active ingredients are tanshinones and phenolic acids, which primarily accumulate in roots. Here, we conducted a targeted metabolic analysis of S. miltiorrhiza roots at 3 distinct growth stages: 40 d old (r40), 60 d old (r60), and 90 d old (r90). The contents of tanshinones (cryptotanshinone, tanshinone I, tanshinone IIA, and rosmariquinone) and phenolic acids (rosmarinic acid and salvianolic acid B) gradually increased during plant development. Whole-genome bisulfite sequencing and transcriptome sequencing of roots at the 3 growth stages revealed an increased level of DNA methylation in the CHH context (H represents A, T, or C) context at r90 compared with r40 and r60. Increased DNA methylation levels were associated with elevated expression of various genes linked to epigenetic regulations, including CHROMOMETHYLASE2 (SmCMT2), Decrease in DNA Methylation 1 (SmDDM1), Argonaute 4 (SmAGO4), and DOMAINS REARRANGED METHYLTRANSFERASE 1 (SmDRM1). Moreover, expression levels of many genes involved in tanshinone and salvianolic acid biosynthesis, such as copalyldiphosphate synthase 5 (SmCPS5), cytochrome P450-related enzyme (SmCYP71D464), geranylgeranyl diphosphate synthase (SmGGPPS1), geranyl diphosphate synthase (SmGPPS), hydroxyphenylpyruvate reductase (SmHPPR), and hydroxyphenylpyruvate dioxygenase (SmHPPD), were altered owing to hyper-methylation, indicating that DNA methylation plays an important role in regulating tanshinone and phenolic acid accumulation. Our data shed light on the epigenetic regulation of root growth and the biosynthesis of active ingredients in S. miltiorrhiza, providing crucial clues for further improvement of active compound production via molecular breeding in S. miltiorrhiza. Increased expression of DNA methyltransferase-related genes contributes to increased DNA methylation during Salvia miltiorrhiza root growth and alters the accumulation of secondary metabolites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要