谷歌浏览器插件
订阅小程序
在清言上使用

Rap1 Activation Protects Against Fatty Liver and Non-Alcoholic Steatohepatitis Development

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览1
暂无评分
摘要
We previously demonstrated that hepatic activation of a small G protein of the Ras family, Rap1a, is suppressed in obesity, which results in increased hepatic glucose production and glucose intolerance in obese mice. Here, we show that Rap1a inhibition in obese mice liver also results in fatty liver formation, which is characteristic of the diabetic liver. Specifically, we report that Rap1a activity is decreased in the livers of patients with non-alcoholic steatohepatitis (NASH) and mouse models of non-alcoholic fatty liver disease (NAFLD) and NASH. Restoring hepatic Rap1a activity by overexpressing a constitutively active mutant form of Rap1a lowered the mature, processed form of lipogenic transcription factor, Srebp1, without an effect on the unprocessed Srebp1 and suppressed hepatic TG accumulation, whereas liver Rap1a deficiency increased Srebp1 processing and exacerbated steatosis. Mechanistically, we show that mTORC1, which promotes Srebp1 cleavage, is hyperactivated upon Rap1a deficiency despite disturbed insulin signaling. In proof-of-principle studies, we found that treatment of obese mice with a small molecule activator of Rap1a (8-pCPT) or inhibiting Rap1a’s endogenous inhibitor, Rap1Gap, recapitulated our hepatic gain-of-function model and resulted in improved hepatic steatosis and lowered lipogenic genes. Thus, hepatic Rap1a serves as a signaling molecule that suppresses both hepatic gluconeogenesis and steatosis, and inhibition of its activity in the liver contributes to the pathogenesis of glucose intolerance and NAFLD/NASH development. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
rap1 activation protects,fatty liver,non-alcoholic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要