Chrome Extension
WeChat Mini Program
Use on ChatGLM

Using loofah reinforced chitosan-collagen hydrogel based scaffolds in-vitro and in-vivo; healing in cartilage tissue defects

Materialia(2023)

Cited 0|Views4
No score
Abstract
The herein article aims to report a new scaffold design as a loofah-reinforced chitosan-collagen hydrogel composite scaffold with three different cross-linker concentrations (0.1, 0.3, and 0.5 wt. /v%). From the analyses, the scaffold crosslinked with 0.5% genipin; collagen-chitosan hydrogel scaffold reinforced with loofah (L-CCol5) was found to be suitable for further in vitro and in vivo studies due to its interconnected porous structure, water content (∼ 97%) and tan delta (0.221 at 1 Hz) values comparable to that of cartilage tissue. In vitro analyses depicted that the L-CCol5 scaffold supported rabbit mesenchymal stem cells (rMSCs) adhesion and proliferation with its non-cytotoxic feature. Moreover, in vivo cartilage healing studies were performed using New Zealand male rabbits in three groups: empty control, cell-free scaffold, and rMSCs-laden scaffold. The elastic moduli of these three groups were 0.69, 0.90, and 1.18 MPa, respectively. Besides, microcomputer tomography (MicroCT) scannings supported the in vivo biomechanical analyses as cell-laden scaffolds showed better osteochondral healing. It can be concluded that the L-CCol5 scaffold could be a promising construct in osteochondral tissue engineering applications. The findings revealed that osteochondral remodeling precedes articular cartilage, providing insight into tailored therapeutic approaches, disease progress, and treatment consequences.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined