Affinity-induced covalent protein-protein ligation via the SpyCatcher-SpyTag interaction

Green Carbon(2023)

引用 1|浏览11
暂无评分
摘要
Production of economically viable bioethanol is potentially an environmentally and financially worthwhile endeavor. One major source for fermentable sugars is lignocellulose. However, lignocellulosic biomass is difficult to degrade, owing to its inherent structural recalcitrance. Cellulosomes are complexes of cellulases and associated polysaccharide-degrading enzymes bound to a protein scaffold that can efficiently degrade lignocellulose. Integration of the enzyme subunits into the complex depends on intermodular cohesin-dockerin interactions, which are robust but nonetheless non-covalent. The modular architecture of these complexes can be used to assemble artificial designer cellulosomes for advanced nanotechnological applications. Pretreatments that promote lignocellulose degradation involve high temperatures and acidic or alkaline conditions that could dismember designer cellulosomes, thus requiring separation of reaction steps, thereby increasing overall process cost. To overcome these challenges, we developed a means of covalently locking cohesin-dockerin interactions by integrating the chemistry of SpyCatcher-SpyTag approach to target and secure the interaction. The resultant cohesin-conjugated dockerin complex was resistant to high temperatures, SDS, and urea while high affinity and specificity of the interacting modular components were maintained. Using this approach, a covalently locked, bivalent designer cellulosome complex was produced and demonstrated to be enzymatically active on cellulosic substrates. The combination of affinity systems with SpyCatcher-SpyTag chemistry may prove of general use for improving other types of protein ligation systems and creating unconventional, biologically active, covalently locked, affinity-based molecular architectures.
更多
查看译文
关键词
affinity-induced,protein-protein,spycatcher-spytag
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要