Chrome Extension
WeChat Mini Program
Use on ChatGLM

Coordinated post-disaster restoration for resilient urban distribution systems: A hybrid quantum-classical approach

Energy(2023)

Cited 0|Views11
No score
Abstract
Incorporating multiple resilient resources into coordinated post-disaster restoration (CPR) strategy contributes positively to resilience enhancement of power distribution systems (PDS). However, the consideration of multiple factors may exacerbate model complexity, resulting in longer solution times and compromising the strategy's practicality. With the remarkable potential power of quantum computing (QC), we propose a hybrid quantumclassical (HQC) approach for this problem. A HQC-based framework is proposed and the CPR model is established considering repair crew dispatch, PDS operation, microgrids operation, and topology reconfiguration. Then, a hybrid quantum-classical Benders decomposition (HQC-BD) algorithm and detailed pseudocode are proposed and presented in compact form. The integer slack and binary expansion methods are applied to transform the constrained problem into quadratic unconstrained binary optimization problem. Finally, the effectiveness and computational efficiency of the proposed HQC-BD approach are verified. The comparative analysis of different calculation methods is conducted by employing the D-Wave's direct quantum processing unit solvers and hybrid solvers via the LeapTM quantum cloud service. This paper explores the possibility of quantum-accelerated resilience restoration and enhancement from the HQC point of view.
More
Translated text
Key words
Resilience,Post -disaster restoration,Power distribution system,Quantum annealing,Hybrid quantum -classical approach,Benders decomposition
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined