Proteomic Analysis Reveals a PLK1-Dependent G2/M Degradation Program and Links PKA-AKAP2 to Cell Cycle Control.

Ryan D Mouery, Carolyn Hsu,Thomas Bonacci,Derek L Bolhuis,Xianxi Wang,Christine A Mills, E Drew Toomer, Owen G Canterbury, Kevin C Robertson,Timothy B Branigan,Nicholas G Brown,Laura E Herring,Michael J Emanuele

bioRxiv : the preprint server for biology(2023)

引用 0|浏览3
暂无评分
摘要
Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFβTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要