Study on Cu- and Pb-contaminated loess remediation using electrokinetic technology coupled with biological permeable reactive barrier

JOURNAL OF ENVIRONMENTAL MANAGEMENT(2023)

引用 1|浏览5
暂无评分
摘要
Although the electrokinetic (EK) remediation has drawn great attention because of its good maneuverability, the focusing phenomenon near the cathode and low removal efficiency remain to be addressed. In this study, a novel EK reactor was proposed to remediate Cu and Pb contaminated loess where a biological permeable reactive barrier (bio-PRB) was deployed to the middle of the EK reactor. For comparison, three test configurations, namely, CG, TG-1, and TG-2, were available. CG considered the multiple enzyme-induced carbonate precipitation (EICP) treatments, while TG-1 considered both the multiple EICP treatments and pH regulation. TG-2 further considered NH4+ recovery based on TG-1. CG not only improved Cu and Pb removals by the bio-PRB but also depressed the focusing phenomenon. TG-1 causes more Cu2+ and Pb2+ to migrate toward the bio-PRB and aggravates Cu and Pb removals by the bio-PRB, depressing the focusing phenomenon. TG-2 depressed the focusing phenomenon the most because Cu2+ and Pb2+ can combine with not only CO32- but PO43-. The removal efficiency of Cu and Pb is 34% and 36%, respectively. A NH4+ recovery of about 100% is attained.
更多
查看译文
关键词
Electrokinetic remediation,Enzyme-induced carbonate precipitation,pH regulation,Ammonia recovery,Loess
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要