Reconfigurable Multifunctional van der Waals Ferroelectric Devices and Logic Circuits

ACS nano(2023)

引用 3|浏览12
暂无评分
摘要
Emerging reconfigurable devices are fast gaining popularity in the search for next-generation computing hardware, while ferroelectric engineering of the doping state in semiconductor materials has the potential to offer alternatives to traditional von-Neumann architecture. In this work, we combine these concepts and demonstrate the suitability of reconfigurable ferroelectric field-effect transistors (Re-FeFETs) for designing nonvolatile reconfigurable logic-in-memory circuits with multifunctional capabilities. Modulation of the energy landscape within a homojunction of a 2D tungsten diselenide (WSe2) layer is achieved by independently controlling two split-gate electrodes made of a ferroelectric 2D copper indium thiophosphate (CuInP2S6) layer. Controlling the state encoded in the program gate enables switching between p, n, and ambipolar FeFET operating modes. The transistors exhibit on-off ratios exceeding 10(6) and hysteresis windows of up to 10 V width. The homojunction can change from Ohmic-like to diode behavior with a large rectification ratio of 10(4). When programmed in the diode mode, the large built-in p-n junction electric field enables efficient separation of photogenerated carriers, making the device attractive for energy-harvesting applications. The implementation of the Re-FeFET for reconfigurable logic functions shows how a circuit can be reconfigured to emulate either polymorphic ferroelectric NAND/AND logic-in-memory or electronic XNOR logic with a long retention time exceeding 10(4) s. We also illustrate how a circuit design made of just two Re-FeFETs exhibits high logic expressivity with reconfigurability at runtime to implement several key nonvolatile 2-input logic functions. Moreover, the Re-FeFET circuit demonstrates high compactness, with an up to 80% reduction in transistor count compared to standard CMOS design. The 2D van de Waals Re-FeFET devices therefore exhibit promising potential for both More-than-Moore and beyond-Moore future of electronics, in particular for an energy-efficient implementation of in-memory computing and machine learning hardware, due to their multifunctionality and design compactness.
更多
查看译文
关键词
reconfigurable electronics,2D materials,ferroelectricity,electronic band structure,optoelectronics,logic gate,circuit design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要