Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests

Plant Diversity(2023)

引用 1|浏览6
暂无评分
摘要
East Asian evergreen broadleaved forests (EBFLs) harbor high species richness, but these ecosystems are severely impacted by global climate change and deforestation. Conserving and managing EBLFs requires understanding dominant tree distribution dynamics. In this study, we used 29 species in Quercus section Cyclobalanopsis—a keystone lineage in East Asian EBLFs—as proxies to predict EBLF distribution dynamics using species distribution models (SDMs). We examined climatic niche overlap, similarity, and equivalency among seven biogeographical regions’ species using ‘ecospat’. We also estimated the effectiveness of protected areas in the predicted range to elucidate priority conservation regions. Our results showed that the climatic niches of most geographical groups differ. The western species under the Indian summer monsoon regime were mainly impacted by temperature factors, whereas precipitation impacted the eastern species under the East Asian summer monsoon regime. Our simulation predicted a northward range expansion of section Cyclobalanopsis between 2081 and 2100, except for the ranges of the three Himalayan species analyzed, which might shrink significantly. The greatest shift of highly suitable areas was predicted for the species in the South Pacific, with a centroid shift of over 300 km. Remarkably, only 7.56% of suitable habitat is currently inside protected areas, and the percentage is predicted to continue declining in the future. To better conserve Asian EBLFs, establishing nature reserves in their northern distribution ranges, and transplanting the populations with predicted decreasing numbers and degraded habitats to their future highly suitable areas, should be high-priority objectives.
更多
查看译文
关键词
quercus section cyclobalanopsis,east asian evergreen,fagaceae,keystone lineage,climate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要