Mechanism of skeletal muscle atrophy by muscle fiber types in male rats under long-term fasting stress.

Takahiro Ieko,Jumpei Fujiki, Yasuhiro Hasegawa,Tomohito Iwasaki, Hidetomo Iwano,Naoyuki Maeda

Steroids(2023)

引用 0|浏览7
暂无评分
摘要
Fasting induces metabolic changes in muscles, which are differentiated by muscle fiber type. In this study, the mechanism of fasting-induced muscle atrophy in rats was examined to determine the differences between muscle fiber types in energy production. Fasting for 96 h did not alter the weight of the soleus (SOL), a fiber type I muscle, but did significantly reduce the weight of gastrocnemius (GM), a fiber type II muscle. GM, SOL and blood pregnenolone and testosterone levels decreased under fasting, which induced energy deprivation, whereas corticosterone (CORT) levels significantly increased. However, the expression of 3β-HSD and P45011β in GM was unaffected by fasting. The decrease in GM weight may be due to decreased levels of testosterone and reduced synthesis of mammalian target of rapamycin (mTOR). Significant increases in CORT both GM and SOL were associated with increases in the amount of branched-chain amino acids available for energy production. However, decreased levels of mTOR and IGF1 and increased levels of CORT and IL-6 in SOL suggest that GM proteolysis was followed by SOL proteolysis for additional energy production. In conclusion, IGF1 levels decreased significantly in SOL, whereas those of IL-6 significantly increased in SOL and blood but decreased in GM. Blood branched-chain amino acids (BCAA) levels were unaffected due to fasting, whereas an increase was noted in the levels of BCAA in GM and SOL. These results show that fasting for 96 h restricts energy supply, producing fast-twitch muscle atrophy followed by slow-twitch muscle atrophy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要