ABPP-CoDEL: Activity-Based Proteome Profiling-Guided Discovery of Tyrosine-Targeting Covalent Inhibitors from DNA-Encoded Libraries

Journal of the American Chemical Society(2023)

引用 0|浏览10
暂无评分
摘要
DNA-encoded chemical library (DEL) has been extensively used for lead compound discovery for decades in academia and industry. Incorporating an electrophile warhead into DNA-encoded compounds recently permitted the discovery of covalent ligands that selectively react with a particular cysteine residue. However, noncysteine residues remain underexplored as modification sites of covalent DELs. Herein, we report the design and utility of tyrosine-targeting DELs of 67 million compounds. Proteome-wide reactivity analysis of tyrosine-reactive sulfonyl fluoride (SF) covalent probes suggested three enzymes (phosphoglycerate mutase 1, glutathione s-transferase 1, and dipeptidyl peptidase 3) as models of tyrosine-targetable proteins. Enrichment with SF-functionalized DELs led to the identification of a series of tyrosine-targeting covalent inhibitors of the model enzymes. In-depth mechanistic investigation revealed their novel modes of action and reactive ligand-accessible hotspots of the enzymes. Our strategy of combining activity-based proteome profiling and covalent DEL enrichment (ABPP-CoDEL), which generated selective covalent binders against a variety of target proteins, illustrates the potential use of this methodology in further covalent drug discovery.
更多
查看译文
关键词
covalent inhibitors,abpp-codel,activity-based,profiling-guided,tyrosine-targeting,dna-encoded
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要