Dynamically Controllable Two-Dimensional Microvehicle by Coordinated Optical Pulling-Lateral Force

IEEE Photonics Journal(2023)

引用 0|浏览8
暂无评分
摘要
Harnessing exotic optical forces promises a plethora of biophysical applications and novel light-matter interactions. The exotic optical pulling force (OPF) and optical lateral force (OLF) have been studied separately, yet synthesizing both candidates simultaneously remains an unsolved challenge and could offer a more powerful manoeuvre of particles. Here, we report a coordinated scheme to harness these two forces together and present a dynamically controlled two-dimensional (2D) microvehicle. The strategy is to leverage unexplored helicity-dependent features of both forces, while the particle size and incident angle of light can also reverse optical forces. The underlying physics of the pulling-lateral force is beyond the dipole approximation, and can be the combined effect from the linear momentum transfer, spin-orbit interactions, etc. Notably, the ratio of both forces can be dynamically and arbitrarily controlled by the ellipticity of incident light solely. The configured 2D microvehicle provides a nontrivial recipe other than using metastructures which require exquisite designs and subtle fabrication processes.
更多
查看译文
关键词
optical,two-dimensional,pulling-lateral
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要