Modified balsa wood with natural, flexible porous structure for gas storage

APPLIED ENERGY(2024)

引用 0|浏览5
暂无评分
摘要
The utilization and transportation of clean energy require efficient energy storage solutions. Gas hydrate represents a promising way for high-density storage under mild conditions. In particular, hydrate induced by confined space has the advantage of being environmentally friendly with rapid nucleation and high mass transfer efficiency. However, the cost of artificial pore-construction methods has hindered its widespread application. In this study, we report a novel approach of hydrate storage in the -SO3- modified flexible balsa wood as a naturally porous material. The surface sulfonate groups were successfully grafted by coupling agents which was verified by various techniques. The material's natural porous hierarchical structure allows for efficient fluid flow in porous media, enabling a reduction in induction time by similar to 88% and a storage capacity of up to 150.6 v/v by adjusting the load water amount. The 100 wt% water-loaded wood materials exhibited the highest water conversion efficiency. Moreover, the recoverable mechanical properties make it reusable without performance degradation. The inner pore structure and hydrate morphologies were further investigated by X-ray microscopy to clarify the hydrate growth mechanism. The interconnected pores and channels make the hydrate grow in layers inside. In addition, the performance could be adjusted by simply changing the hydrophobicity to regulate the gas flow which may contribute to the large storage systems. The use of natural biomass porous materials provides an environmentally friendly and economically feasible strategy for gas storage.
更多
查看译文
关键词
Gas storage,Gas hydrate,Balsa wood,Hydrate promoter,Confined space
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要