Fatigue behaviors and damage mechanisms for Nb3Sn triple-helical structure at liquid nitrogen temperature

SUPERCONDUCTIVITY(2023)

Cited 0|Views6
No score
Abstract
Nb3Sn triple-helical structure is the elementary structure in the superconducting cable of ITER magnets and undergoes prolonged fatigue loading in extreme environments leading to serious damage degradation. In this paper, the fatigue behaviors of the Nb3Sn triple-helical structure have been investigated by the strain cycling fatigue experiments at liquid nitrogen temperature. The results indicate that Nb3Sn triple-helical structures with short twist-pitches possess excellent fatigue damage resistance than that of long twist-pitches, such as longer fatigue life, slower damage degradation, and smaller energy dissipation. Meanwhile, a theoretical model of damage evolution has been established to reveal the effects of twist-pitches on fatigue properties for triple-helical structures, which is also validated by the present experimental data. Furthermore, one can see that the Nb3Sn superconducting wires in a triple-helical structure with the shorter twist-pitches have a larger elongation of helical structure and less cyclic deformation, which can be considered as the main mechanism of better fatigue damage properties for the triple-helical structures during the strain cycling processes. These findings provide a better understanding of the fatigue properties and damage mechanisms for Nb3Sn triple-helical structures in superconducting cables of ITER magnets.
More
Translated text
Key words
Nb 3 Sn triple-helical structures,Fatigue damage,Twist-pitches,Liquid nitrogen temperature,Theoretical model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined