Sagebrush-Associated Bunchgrasses Drive Invasion Resistance in a Greenhouse Experiment

RANGELAND ECOLOGY & MANAGEMENT(2024)

引用 0|浏览7
暂无评分
摘要
Invasion of non-native annual grasses is a significant threat to the sustainability of sagebrush steppe ecosystems. Ecological resilience, the ability to bounce back after a disturbance, and resistance, the ability to withstand invasion, are influenced by both abiotic factors, such as soil temperature, moisture, elevation, and aspect, and biotic factors, such as plant community composition. We quantified the effects of moss biocrusts, native shrubs, and native perennial grasses on invasion resistance in a greenhouse experiment containing dominant sagebrush ecosystem plants and invasive grasses. We saw greatest suppression of invasive annual grass biomass in treatment replicates containing native bunchgrass species (P < 0.01). Final invasive grass biomass was 4.79 g on average when perennial grasses were not present and was reduced to 1.59 g with perennial grass competition (P < 0.01). Presence of shrubs and moss biocrusts did not decrease annual grass biomass (P = 0.38 and P = 0.25, respectively). We saw complex interactions between native plants grown in these ideal greenhouse conditions such that native perennial grass seedlings grown with sagebrush seedlings had a mean of 4.50 g more biomass (P < 0.001) relative to pots grown with bitterbrush or without shrubs, but shrubs were an average of 7.9 cm (P < 0.001) shorter and had biomass 4.75 g lower (P < 0.001) in pots grown with perennial grasses compared with shrubs grown without perennial grasses. Our results demonstrate that with increased treatment complexity, we see greater invasion resistance, but that nuanced relationships between plant community members should also be considered in managing and restoring these imperiled ecosystems. (c) 2023 The Author(s). Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
更多
查看译文
关键词
Annual grass,Artemisia tridentata,Bromus tectorum,competition,Purshia tridentata,Taeniatherum caput-medusae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要