Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery

JOURNAL OF ENVIRONMENTAL MANAGEMENT(2023)

引用 1|浏览0
暂无评分
摘要
The metal resource crisis and the inherent need for a low-carbon circular economy have driven the rapid development of e-waste recycling technology. High-value waste printed circuit boards (WPCBs) are an essential component of e-waste. However, WPCBs are considered hazardous to the ecosystem due to the presence of heavy metals and brominated organic polymers. Therefore, achieving the recycling of metals in WPCBs is not only a strategic requirement for building a green ecological civilization but also an essential guarantee for achieving a safe supply of mineral resources. This review systematically analyzes the hydrometallurgical technology of metals in WPCBs in recent years. Firstly, the different unit operations of pretreatment in the hydrometallurgical process, which contain disassembly, crushing, and pre-enrichment, were analyzed. Secondly, environmentally friendly hydrometallurgical leaching systems and high-value product regeneration technologies used in recent years to recover metals from WPCBs were evaluated. The leaching techniques, including cyanidation, halide, thiourea, and thiosulfate for precious metals, and inorganic acid, organic acid, and other leaching methods for base metals such as copper and nickel in WPCBs, were outlined, and the leaching performance and greenness of each leaching system were summarized and analyzed. Eventually, based on the advantages of each leaching system and the differences in chemical properties of metals in WPCBs, an integrated and multi-gradient green process for the recovery of WPCBs was proposed, which provides a sustainable pathway for the recovery of metals in WPCBs. This paper provides a reference for realizing the gradient hydrometallurgical recovery of metals from WPCBs to promote the recycling metal resources.
更多
查看译文
关键词
WPCBs,Hydrometallurgy,Clean leaching,Polymetallic components,Low carbon sustainability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要