Mathematical modeling of SARS-CoV-2 variant substitutions in European countries: transmission dynamics and epidemiological insights

FRONTIERS IN PUBLIC HEALTH(2024)

引用 0|浏览20
暂无评分
摘要
Background Countries across Europe have faced similar evolutions of SARS-CoV-2 variants of concern, including the Alpha, Delta, and Omicron variants.Materials and methods We used data from GISAID and applied a robust, automated mathematical substitution model to study the dynamics of COVID-19 variants in Europe over a period of more than 2 years, from late 2020 to early 2023. This model identifies variant substitution patterns and distinguishes between residual and dominant behavior. We used weekly sequencing data from 19 European countries to estimate the increase in transmissibility ( Delta beta ) between consecutive SARS-CoV-2 variants. In addition, we focused on large countries with separate regional outbreaks and complex scenarios of multiple competing variants.Results Our model accurately reproduced the observed substitution patterns between the Alpha, Delta, and Omicron major variants. We estimated the daily variant prevalence and calculated Delta beta between variants, revealing that: ( i ) Delta beta increased progressively from the Alpha to the Omicron variant; ( i i ) Delta beta showed a high degree of variability within Omicron variants; ( i i i ) a higher Delta beta was associated with a later emergence of the variant within a country; ( i v ) a higher degree of immunization of the population against previous variants was associated with a higher Delta beta for the Delta variant; ( v ) larger countries exhibited smaller Delta beta , suggesting regionally diverse outbreaks within the same country; and finally ( v i ) the model reliably captures the dynamics of competing variants, even in complex scenarios.Conclusion The use of mathematical models allows for precise and reliable estimation of daily cases of each variant. By quantifying Delta beta , we have tracked the spread of the different variants across Europe, highlighting a robust increase in transmissibility trend from Alpha to Omicron. Additionally, we have shown that the geographical characteristics of a country, as well as the timing of new variant entrances, can explain some of the observed differences in variant substitution dynamics across countries.
更多
查看译文
关键词
SARS-COV-2 variants,transmissibility,vaccination rates,epidemiological timing,effective reproduction number,epidemiological modeling,variant substitution,genomic surveillance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要