Correlation-Driven Magnetic Frustration and Insulating Behavior of TiF3

arXiv (Cornell University)(2023)

引用 0|浏览3
暂无评分
摘要
The halide perovskite TiF3, renowned for its intricate interplay between structure, electronic correlations, magnetism, and thermal expansion, is investigated. Despite its simple structure, understanding its low-temperature magnetic behavior has been a challenge. Previous theories propose antiferromagnetic ordering. In contrast, experimental signatures for an ordered magnetic state are absent down to 10 K. The current study has successfully reevaluated the theoretical modeling of TiF3, unveiling the significance of strong electronic correlations as the key driver for its insulating behavior and magnetic frustration. In addition, frequency-dependent optical reflectivity measurements exhibit clear signs of an insulating state. The analysis of the calculated magnetic data gives an antiferromagnetic exchange coupling with a net Weiss temperature of order 25 K as well as a magnetic response consistent with a S = 1/2 local moment per Ti3+. Yet, the system shows no susceptibility peak at this temperature scale and appears free of long-range antiferromagnetic order down to 1 K. Extending ab initio modeling of the material to larger unit cells shows a tendency for relaxing into a noncollinear magnetic ordering, with a shallow energy landscape between several magnetic ground states, promoting the status of this simple, nearly cubic perovskite structured material as a candidate spin liquid.
更多
查看译文
关键词
correlation driven magnetic frustration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要