Dissociation of Centrally and Peripherally Induced Transcranial Magnetic Stimulation Effects in Nonhuman Primates

JOURNAL OF NEUROSCIENCE(2023)

引用 0|浏览6
暂无评分
摘要
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.
更多
查看译文
关键词
invasive electrophysiology,local field potentials,nonhuman primates,transcranial magnetic stimulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要