Epitaxial van der Waals contacts of 2D TaSe2-WSe2 metal-semiconductor heterostructures

NANOSCALE(2023)

引用 1|浏览1
暂无评分
摘要
The electronic contact between two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors and metal electrodes is a formidable challenge due to the undesired Schottky barrier, which severely limits the electrical performance of TMD devices and impedes the exploration of their unconventional physical properties and potential electronic applications. In this study, we report a two-step chemical vapor deposition (CVD) growth of 2D TaSe2-WSe2 metal-semiconductor heterostructures. Raman mapping confirms the precise spatial modulation of the as-grown 2D TaSe2-WSe2 heterostructures. Transmission electron microscopy (TEM) characterization reveals that this two-step method provides a high-quality and clean interface of the 2D TaSe2-WSe2 heterostructures. Meanwhile, the upper 1T-TaSe2 is formed heteroepitaxially on/around the pre-synthesized 2H-WSe2 monolayers, exhibiting an epitaxial relationship of (20-20)TaSe2//(20-20)WSe2 and [0001]TaSe2//[0001]WSe2. Furthermore, characterization studies using a Kelvin probe force microscope (KPFM) and electrical transport measurements present compelling evidence that the 2D metal-semiconductor heterostructures under investigation can improve the performance of electrical devices. These results bear substantial significance in augmenting the properties of field-effect transistors (FETs), leading to notable improvements in FET mobility and on/off ratio. Our study not only broadens the horizons of direct growth of high-quality 2D metal-semiconductor heterostructures but also sheds light on potential applications in future high-performance integrated circuits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要