Longitudinal analysis left ventricular chamber responses under durable LVAD support.

The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation(2023)

引用 0|浏览4
暂无评分
摘要
BACKGROUND:Left ventricular assist device (LVAD) support offers remodeling potential in some patients. Our goal was to use noninvasively derived pressure-volume (PV) loops to understand the effect of demographic and device variables on serial changes in cardiac function under pump support. METHODS:Thirty-two consecutive Medtronic HeartWare Ventricular Assist Device (HVAD) patients (mean 55.9 ± 12.3 years, 81.3% male) were prospectively recruited. Single-cycle ventricular pressure and volume were estimated using a validated algorithm. PV loops (n = 77) and corresponding cardiac chamber dynamics were derived at predefined postimplant timepoints (1, 3, 6 months). Changes in PV loop parameters sustained across the 6-month period were characterized using mixed-effects modeling. The influence of demographic and device variables on the observed changes was assessed. RESULTS:Across a 6-month period, the mean ventricular function parameters remained stable. Significant predictors of monthly improvement of stroke work include: lower pump speeds (2400 rpm vs 2500-2800 rpm) [0.0.051 mm Hg/liter/month (p = 0.001)], high pulsatility index (>1.0 vs <1.0) [0.052 mm Hg/liter/month (p = 0.012)], and ischemic cardiomyopathy indication for LVAD implantation (vs nonischemic) [0.0387 mm Hg/liter/month (p = 0.007)]. Various other cardiac chamber function parameters including cardiac power, peak systolic pressure, and LV elastance also showed improvements in these cohorts. CONCLUSIONS:Factors associated with improvement in ventricular energetics and hemodynamics under LVAD support can be determined with noninvasive PV loops. Understanding the basis of increasing ventricular load to optimize myocardial remodeling may prove valuable in selecting eligible recovery candidates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要