Microbial community function and methylmercury production in oxygen-limited paddy soil

Ecotoxicology and Environmental Safety(2023)

引用 0|浏览4
暂无评分
摘要
Methylmercury is a neurotoxic compound that can enter rice fields through rainfall or irrigation with contaminated wastewater, and then contaminate the human food chain through the consumption of rice. Flooded paddy soil has a porous structure that facilitates air exchange with the atmosphere, but the presence of trace amounts of oxygen in flooded rice field soil and its impact on microbial-mediated formation of methylmercury is still unclear. We compared the microbial communities and their functions in oxygen-depleted and oxygen-limited paddy soil. We discovered that oxygen-limited paddy soil had higher methylmercury concentration, which was strongly correlated with soil properties and methylation potential. Compared with oxygen-depleted soil, oxygen-limited soil altered the microbial composition based on 16 S rRNA sequences, but not based on hgcA sequences. Moreover, oxygen-limited soil enhanced microbial activity significantly, increasing the abundance of more than half of the KEGG pathways, especially the metabolic pathways that might be involved in methylation. Our study unveils how microbial communities influence methylmercury formation in oxygen-limited paddy soil. Environmental implications: This study examined how low oxygen input affects microbial-induced MeHg formation in anaerobic paddy soil. We found that oxygen-limited soil produced more MeHg than oxygen-depleted soil. Oxygen input altered the microbial community structure of 16 S rRNA sequencing in anaerobic paddy soil, but had little impact on the hgcA sequencing community structure. Microbial activity and metabolic functions related to MeHg formation were also higher in oxygen-limited paddy soil. We suggest that oxygen may not be a limiting factor for Hg methylators, and that insufficient oxygen input in flooded paddy soil increases the risk of human exposure to MeHg from rice consumption.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要