Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants

Izhar Ullah, Muhammad Danish Toor,Abdul Basit,Heba I. Mohamed,Mohammed Gamal, Nouraiz Ahmed Tanveer,Syed Tanveer Shah

WATER AIR AND SOIL POLLUTION(2023)

Cited 0|Views0
No score
Abstract
Nanotechnology is a new approach to enhancing the agriculture sector by offering new strategies for fostering tolerance against different stresses and boosting output. Abiotic stresses, especially drought and salinity, are the foremost constraints that may severely affect plant growth and crop production, posing a direct threat to the food supply required to meet the increasing demands of the growing global population. The use of nanotechnology is a step towards a modernized agriculture system that has revealed the promising role of nanoparticles (NPs) in improving the growth of plants and the development of different abiotic stress tolerances by increasing hormonal production and photosynthesis pigments and reducing oxidative stress by activating antioxidant enzymes. Salinity and drought stress trigger a variety of morphological, physiological, biochemical, and molecular alterations that have a negative impact on a number of metabolic processes related to plant growth and productivity. NPs enter the plant system by several routes, mainly through roots and leaves, and interact with plants at cellular and subcellular levels, promoting changes in morphological, biochemical, physiological, and molecular states. Contamination with heavy metals (HM) is a major issue that hinders crop production and threatens food security. Outside the soil, foliar spraying is another better way to improve plant resistance to HM. Nutrient intake can be increased by applying nanofertilizer, which ultimately reduces nutrient losses, improves crop quality and yield, and reduces environmental degradation risk. Nanoparticulate fertilizer contains other NPs, such as cerium NPs, silicon NPs, carbon NPs, and titanium dioxide, that promote plant growth. The review aimed to examine the penetration and transport of nanoparticles in plants in order to comprehend the potential advantages of using nanotechnology in agriculture. Our study focused on presenting the effects of stress conditions on plants, their responses to such conditions, and the nano-based abiotic-mediated mechanisms of plants. Additionally, we also explored the physiochemical characteristics of nano-based metal oxide applications for improving agricultural systems.
More
Translated text
Key words
Nanotechnology,Nanomaterials,Abiotic stress tolerance,Metal-based nanoparticles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined