Resonant Effects of a Bar on the Galactic Disk Kinematics Perpendicular to Its Plane

Galaxies(2023)

引用 0|浏览1
暂无评分
摘要
Detailed analysis of kinematics of the Milky Way disk in the solar neighborhood based on the GAIA DR3 catalog reveals the existence of peculiarities in the stellar velocity distribution perpendicular to the galactic plane. We study the influence of resonances-the outer Lindblad resonance and the outer vertical Lindblad resonance-of a rotating bar with stellar oscillations perpendicular to the plane of the disk, and their role in shaping the spatial and the velocity distributions of stars. We find that the Z and VZ distributions of stars with respect to LZ are affected by the outer Lindblad resonance. The existence of bar resonance with stellar oscillations perpendicular to the plane of the disk is demonstrated for a long (large semi-axis 5 kpc) and fast rotating bar with omega b=60.0kms-1kpc-1. We show also that, in the model with the long and fast rotating bar, some stars in the 2:1 OLR region deviate far from their original places, entering the bar region. A combination of resonance excitation of stellar motions at the 2:1 OLR region together with strong interaction of the stars with the bar potential leads to the formation of the group of 'escapees', i.e., stars that deviate in R and Z-directions at large distances from the resonance region. Simulations, however, do not demonstrate any noticeable effect on VZ-distribution of stars in the solar neighborhood.
更多
查看译文
关键词
Milky Way disk,kinematics,dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要