Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Quasar Feedback Survey: characterising CO excitation in quasar host galaxies

arXiv (Cornell University)(2023)

Cited 0|Views17
No score
Abstract
We present a comprehensive study of the molecular gas properties of 17 Type 2 quasars at $z <$ 0.2 from the Quasar Feedback Survey (L$_{[OIII]}$ > $10^{42.1}$ $\rm ergs^{-1}$), selected by their high [OIII] luminosities and displaying a large diversity of radio jet properties, but dominated by LIRG-like galaxies. With these data, we are able to investigate the impact of AGN and AGN feedback mechanisms on the global molecular interstellar medium. Using APEX and ALMA ACA observations, we measure the total molecular gas content using the CO(1-0) emission and homogeneously sample the CO spectral line energy distributions (SLEDs), observing CO transitions (J$_{up}$ = 1, 2, 3, 6, 7). We observe high $r_{21}$ ratios (r$_{21}$ = L'$_{CO(2-1)}$/L'$_{CO(1-0)}$) with a median $r_{21}$ = 1.06, similar to local (U)LIRGs (with $r_{21}$ $\sim$ 1) and higher than normal star-forming galaxies (with r$_{21}$ $\sim$ 0.65). Despite the high $r_{21}$ values, for the 7 targets with the required data we find low excitation in CO(6-5) & CO(7-6) ($r_{61}$ and $r_{62}$ < 0.6 in all but one target), unlike high redshift quasars in the literature, which are far more luminous and show higher line ratios. The ionised gas traced by [OIII] exhibit systematically higher velocities than the molecular gas traced by CO. We conclude that any effects of quasar feedback (e.g. via outflows and radio jets) do not have a significant instantaneous impact on the global molecular gas content and excitation and we suggest that it only occurs on more localised scales.
More
Translated text
Key words
quasar feedback survey,quasar host
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined