VBFT: Veloce Byzantine Fault Tolerant Consensus for Blockchains

CoRR(2023)

Cited 0|Views7
No score
Abstract
Low latency is one of the most desirable features of partially synchronous Byzantine consensus protocols. Existing low-latency protocols have achieved consensus with just two communication steps by reducing the maximum number of faults the protocol can tolerate (from $f = \frac{n-1}{3}$ to $f = \frac{n+1}{5}$), \textcolor{black}{by relaxing protocol safety guarantees}, or by using trusted hardware like Trusted Execution Environment. Furthermore, these two-step protocols don't support rotating primary and low-cost view change (leader replacement), which are important features of many blockchain use cases. In this paper, we propose a protocol called VBFT which achieves consensus in just two communication steps without scarifying desirable features. In particular, VBFT tolerates $f = \frac{n-1}{3}$ faults (which is the best possible), guarantees strong safety for honest primaries, and requires no trusted hardware. Moreover, VBFT supports primary rotation and low-cost view change, thereby improving prior art on multiple axes.
More
Translated text
Key words
blockchains,consensus
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined