Effects of artificial light at night and drought on the photosynthesis and physiological traits of two urban plants

Frontiers in Plant Science(2023)

Cited 0|Views7
No score
Abstract
Urban plants are currently confronted with the stresses posed by artificial light at night (ALAN) and drought. A field block experiment was designed to explore the potential effects of ALAN and drought on the photosynthesis and physiological characters of two common urban plants, Euonymus japonicus (E. japonicus) and Rosa hybrida (R. hybrida). Each plant species was subjected to four distinct treatments: neither ALAN nor drought, ALAN, drought, and both ALAN and drought. The result showed the following: (1) ALAN significantly reduced the effective quantum yield (ΦPSII), apparent electron transfer rate (ETR), photochemical quenching parameter (qp), net photosynthetic (Pn), stomatal conductance (Gs), stomatal limit value (Ls), and the pigment concentrations and remarkably increased the content of malondialdehyde (MDA), total antioxidant capacity (TAC), and starch in both E. japonicus and R. hybrida. Furthermore, ALAN increased the soluble saccharides of E. japonicus, and this effect of ALAN also occurred on R. hybrida under drought. (2) Drought significantly decreased the ΦPSII, ETR, qp, Pn, Gs, Ls, and the pigment concentrations and remarkably increased the content of MDA and TAC for both E. japonicus and R. hybrida. Moreover, drought did not significantly change the starch content of both species, and it significantly increased the content of soluble saccharides for E. japonicus. (3) The interaction between ALAN and drought occurred on the ΦPSII, ETR, Pn, MDA, and TAC of E. japonicus, but had no effect on R. hybrida. For urban areas affected by ALAN and drought, it is advisable to select plant species with strong stress resistance for gardening purposes, and plants directly exposed to ALAN should receive sufficient water during hot and dry weather conditions to maintain their normal growth.
More
Translated text
Key words
photosynthesis,drought,artificial light,plants
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined