Asymptotic analysis and simulation of mean first passage time for active Brownian particles in 1-D

SIAM Journal on Applied Mathematics(2023)

引用 0|浏览4
暂无评分
摘要
Active Brownian particles (ABPs) are a model for nonequilibrium systems in which the constituent particles are self-propelled in addition to their Brownian motion. Compared to the well-studied mean first passage time (MFPT) of passive Brownian particles, the MFPT of ABPs is much less developed. In this paper, we study the MFPT for ABPs in a 1-D domain with absorbing boundary conditions at both ends of the domain. To reveal the effect of swimming on the MFPT, we consider an asymptotic analysis in the weak-swimming or small P\'eclet (Pe) number limit. In particular, analytical expressions for the survival probability and the MFPT are developed up to O(Pe$^2$). We explore the effects of the starting positions and starting orientations on the MFPT. Our analysis shows that if the starting orientations are biased towards one side of the domain, the MFPT as a function of the starting position becomes asymmetric about the center of the domain. The analytical results were confirmed by the numerical solutions of the full PDE model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要