Effects of unpredictable chronic mild stress on the cellular redox state and mitochondrial energy homeostasis in rat adipose tissue: A comprehensive metabolic study.

Cell biochemistry and function(2023)

引用 0|浏览5
暂无评分
摘要
Unpredictable chronic mild stress (UCMS) leads to variable metabolic effects. Oxidative stress (OS) of adipose tissue (AT) and mitochondrial energy homeostasis is little investigated. This work studied the effects of UCMS on OS and the antioxidant/redox status in AT and mitochondrial energy homeostasis in rats. Twenty-four male Wistar rats (180-220 g) were divided into two equal groups; the normal control (NC) group and the UCMS group which were exposed to various stresses for 28 days. An indirect calorimetry machine was used to measure volumes of respiratory gases (VO & VCO ), total energy expenditure (TEE), and food intake (FI). The AT depots were collected, weighed, and used for measuring activities and gene expression of key antioxidant enzymes (GPx1, SOD, CAT, GR, GCL, and GS), OS marker levels including superoxide anion (SA), peroxynitrite radical (PON), nitric oxide (NO), hydrogen peroxide (H O ), lipid peroxides (LPO), t-protein carbonyl content (PCC), and reduced/oxidized glutathione levels (GSH, GSSG). Additionally, AT mitochondrial fractions were used to determine the activities of the tricarboxylic acid cycle (TCA) cycle enzymes (CS, α-KGDH, ICDH, SDH, MDH), respiratory chain complexes I-III, II-III, IV, the nicotinamide coenzymes NAD , NADH, and ATP/ADP levels. Compared with the NC group, the UCMS group showed very significantly increased OS marker levels, lowered antioxidant enzyme activities and gene expression, as well as lowered TCA cycle and respiratory chain activity and NAD , NADH, and ATP levels (p < .001 for all comparisons). Besides, the UCMS group had lowered TEE and insignificant FI and weight gain. In conclusion, AT of the UCMS-subjected rats showed a state of disturbed redox balance linked to disrupted energy homeostasis producing augmentation of AT.
更多
查看译文
关键词
mitochondrial energy homeostasis,adipose tissue,comprehensive metabolic study,unpredictable chronic mild stress,cellular redox state
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要