Entropy generation in MHD Darcy-Forchheimer flow of hybrid nanomaterial: A numerical study of local similar solution

ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK(2024)

引用 0|浏览1
暂无评分
摘要
The presented article aims to analyze the three-dimensional electrically conducting flow induced by a rotating stretchable disk. A hybrid nanomaterial is generated by adding copper and graphene oxide nanoparticles to kerosene oil, which saturates through a Darcy-Forchheimer porous medium. The article also reports on entropy generation and the Bejan number. To solve the associated partial differential equations, appropriate transformations are applied to convert them into ordinary differential equations. These equations are then solved numerically to obtain the desired solutions. The significance of these nanoparticles in kerosene oil is due to their ability to enhance heat transfer and thermal conductivity, thereby optimizing the performance of the rotating stretchable disk system. The synergistic effects of these components lead to improved energy efficiency and overall system effectiveness. The results for various quantities of interest, such as velocity, entropy, temperature, and the Bejan number, are presented graphically and analyzed considering the influence of relevant parameters. Moreover, the comparative analysis indicated that hybrid nanofluid have dominating effect than base liquid (kerosene oil).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要