Aerodynamic Exploration on Rough Airfoil Based on Overlapping Feathers of a Swift-Wing Structure

AEROSPACE(2023)

引用 0|浏览9
暂无评分
摘要
To investigate the flow mechanism of feather-like rough airfoils based on swift wings, computational simulations were employed to explore their overall aerodynamic characteristics in comparison to equivalent smooth airfoils. The study focused on angles of attack ranging from 0 degrees to 20 degrees at low Reynolds numbers. The results reveal that the rough airfoil exhibits higher lift and lower drag compared to the smooth airfoil at moderate angles of attack ranging from 6 degrees to 10 degrees, resulting in significantly improved aerodynamic efficiency. Notably, at an angle of attack of 8 degrees, the aerodynamic efficiency is increased by 19%. However, at angles of attack smaller than 6 degrees, the increase in drag outweighs the increase in lift, leading to lower aerodynamic efficiency for the rough airfoil. Conversely, when the angle of attack exceeds 16 degrees, both airfoils experience separated flow-dominated flow fields, resulting in comparable effective aerodynamic shapes and similar aerodynamic efficiencies. Furthermore, the study found that increasing the Reynolds number results in greater pressure differences in the flow field, leading to higher aerodynamic efficiency. These preliminary conclusions are valuable for elucidating the flight mechanisms of bird-feather-like wings and can inform the design or morphing design of bio-inspired micro aerial vehicles in the near future.
更多
查看译文
关键词
swift wing, rough airfoil, low Reynolds number flow, separated flow, aerodynamic performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要