There and back to the present: a model-based framework to estimate phylogenetically constrained alpha diversity gradients

ECOGRAPHY(2023)

Cited 0|Views18
No score
Abstract
The imprint left by niche evolution on the variation of biological diversity across spatial and environmental gradients is still debated among ecologists. Furthermore, understanding to what extent dispersal limitation may reinforce or blur such imprint is still a gap in the ecological knowledge. In this article we introduce a simulation approach coupled to approximate Bayesian computation (ABC) that parameterizes both the adaptation rate of species' niche positions over the evolution of a monophyletic lineage and the intensity of dispersal limitation associated with the variation of species alpha diversity among assemblages distributed across spatial and environmental gradients. The analytical tool was implemented in the R package 'mcfly' (). We evaluated the statistical performance of the analytical framework using simulated datasets, which confirmed the suitability of the analysis to estimate adaptation rate parameter but showed to be less precise in relation to the dispersal limitation parameter. Also, we found that increased dispersal limitation levels improved the parameterization of the adaptation rate of species' niche positions in simulated datasets. Further, we evaluated the role played by niche evolution and dispersal limitation on species alpha diversity variation of Phyllostomidae bats across the Neotropics. The framework proposed here shed light on the links between niche evolution, dispersal limitation and gradients of biological diversity, and thereby improved our understanding of evolutionary imprints on current biological diversity patterns.
More
Translated text
Key words
adaptive rate,approximate Bayesian computation (ABC),eco-evolutionary dynamics,Ornstein-Uhlenbeck model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined