Chrome Extension
WeChat Mini Program
Use on ChatGLM

Confinement-Induced Phonon Softening and Hardening in Sb2Te3 Thin Films

ADVANCED FUNCTIONAL MATERIALS(2024)

Cited 0|Views12
No score
Abstract
Scaling effects in Sesqui-chalcogenides are of major interest to understand and optimize their performance in heavily scaled applications, including topological insulators and phase-change devices. A combined experimental and theoretical study is presented for molecular beam epitaxy-grown films of antimony-telluride (Sb2Te3). Structural,vibrational, optical, and bonding properties upon varying confinement are studied for thicknesses ranging from 1.3 to 56 nm. In ultrathin films, the low-frequency coherent phonons of A(1g)(1) symmetry are softened compared to the bulk (64.5 cm(-1) at 1.3 nm compared to 68 cm(-1) at 55.8 nm). A concomitant increase of the high-frequency A(1g)(2) Raman mode is seen. X-ray diffraction analyses unravel an accompanying out of plane stretch by 5%, mainly stemming from an increase in the Te-Te gap. This conclusion is supported by density functional theory slab models, which reveal a significant dependency of chemical bonding on film thickness. Changes in atomic arrangement, vibrational frequencies, and bonding extend over a thickness range much larger than observed for other material classes. The finding of these unexpectedly pronounced thickness-dependent effects in quasi-2D material Sb2Te3 allows tuning of the film properties with thickness. The results are discussed in the context of a novel bond-type, characterized by a competition between electron localization and delocalization.
More
Translated text
Key words
coherent phonons,confinement,metavalent bonding,sesquichalcogenides,topological Insulators
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined