Improvement design and simulation analysis on centrifugal disc organic fertilizer spreader

INMATEH-AGRICULTURAL ENGINEERING(2023)

Cited 0|Views0
No score
Abstract
Aiming at the poor efficiency in crushing a handful of caking organic fertilizers spraying from the traditional disc spreader, an improved disc spreader equipped with spike-tooth crushing unit was designed with the introduction of its structural composition and working principle. Also simulation experiments were carried out based on the discrete element method according to the solutions made before and after the structural improvement. Firstly, a granular organic fertilizer model was established based on the EDEM and a caking organic fertilizer bonding model was built based on the HMB (Hertz-Mindlin with bonding) contact model. Then two organic fertilizer spreading models corresponding to the solutions were respectively established, based on which simulation experiments were repeated three times on the spreading process. The analysis on the particle velocity vector diagram revealed the interaction relationship between organic fertilizers with the toothed shaft, external wall and disk, verifying the crushing mechanism of crushing unit. By calculating the total number of the bonds generated and broken in the spreading process in both of the spreading models, the average broken rate of bonds in the spreading process was separately 58.87% and 98.05% based on each solution, revealing that the improved solution outperformed the traditional solution in terms of the efficiency in crushing the caking organic fertilizers. This research will be a reference in designing the critical components or improving the overall performance of disc spreader.
More
Translated text
Key words
organic fertilizer, spreader, crushing unit, discrete element method
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined