An optimized nonlinear generalized predictive control for steam temperature in an ultra supercritical unit

ISA TRANSACTIONS(2023)

引用 1|浏览7
暂无评分
摘要
The optimize control of the ultra supercritical (USC) unit has been a major concern in power industry. The intermediate point temperature process is a multi-variable system with strong nonlinearity, large scale and great delay, which greatly affects the safety and economy of the USC unit. Generally, it is difficult to realize effective control by using conventional methods. This paper presents a nonlinear generalized predictive control based on a composite weighted human learning optimization network (CWHLO-GPC) to improve the control performance of intermediate point temperature. Based on the characteristics of the onsite measurement data, the heuristic information is incorporated into the CWHLO network, and expressed by different local linear models. Then, global controller is elaborately constituted based on a scheduling program inferred from the network. Compared with classical generalized predictive control (GPC), the non-convex problem is effectively solved by introducing CWHLO models into the convex quadratic program (QP) routine of local linear GPC. Finally, detailed analysis on set point tracking and interference resisting via simulation is addressed to illustrate the efficiency of the proposed strategy.& COPY; 2023 ISA. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Ultra supercritical unit,A composite weighted human learning optimization network,Generalized predictive control,Convex optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要