Efficient photocatalytic nitrogen fixation over novel 2D/2D Bi12O17Br2/ ZnCr layered double hydroxide heterojunction

APPLIED SURFACE SCIENCE(2023)

引用 0|浏览8
暂无评分
摘要
Herein, a novel ultrathin 2D/2D heterostructure, Bi12O17Br2 with oxygen vacancies/ZnCr layered double hydroxides (Vo-Bi12O17Br2/ZnCr-LDHs, Vo-BZ) is prepared by solvothermal and coprecipitation methods for photocatalytic reduction of N2 to NH3. The optimal 2D/2D Vo-BZ heterostructure photocatalyst shows production rate of ammonia production of 286.0 & mu;mol & BULL;g- 1 & BULL;h- 1. It is 12.5 and 3.6 times higher than that of pure ZnCr-LDHs and Vo-Bi12O17Br2. The improved photocatalytic nitrogen reduction performance is attributed to the intimate contact interface, matching bandgap structure, the shortened migration distance, and thus significantly improved separation and transfer efficiency of hole-electron pairs and light adsorption ability. The large number of oxygen vacancies and high specific surface promote the absorption, activation and deionization of N2 molecules. The theoretical simulation calculation indicates that the free energy of nitrogen molecules on the surface of Vo-BZ is favorable for the absorption and activation of N2 molecules. The existence of oxygen vacancies and formation of heterojunctions can dramatically reduce energy barrier of nitrogen molecule hydrogenation process to boost photocatalytic N2 reduction. This study provides a new idea for the development of efficient photocatalytic nitrogen fixing catalysts.
更多
查看译文
关键词
Vo-Bi12O17Br2/ZnCr-LDHs,Oxygen vacancies,Ultrathin nanosheets,Photocatalytic nitrogen fixation,DFT simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要