Quantum imaginary time evolution and quantum annealing meet topological sector optimization

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
Optimization problems are the core challenge in many fields of science and engineering, yet general and effective methods are scarce for searching optimal solutions. Quantum computing has been envisioned to help solve such problems, for example, the quantum annealing (QA) method based on adiabatic evolution has been extensively explored and successfully implemented on quantum simulators such as D-wave's annealers and some Rydberg arrays. In this work, we investigate topological sector optimization (TSO) problem, which attracts particular interests in the quantum many-body physics community. We reveal that the topology induced by frustration in the spin model is an intrinsic obstruction for QA and other traditional methods to approach the ground state. We demonstrate that the optimization difficulties of TSO problem are not restricted to the gaplessness, but are also due to the topological nature which are often ignored for the analysis of optimization problems before. To solve TSO problems, we utilize quantum imaginary time evolution (QITE) with a possible realization on quantum computers, which exploits the property of quantum superposition to explore the full Hilbert space and can thus address optimization problems of topological nature. We report the performance of different quantum optimization algorithms on TSO problems and demonstrate that their capability to address optimization problems are distinct even when considering the quantum computational resources required for practical QITE implementations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要