Novel Electrode Designs for Electrotactile Stimulation of the Finger: A Comparative Assessment

IEEE TRANSACTIONS ON HAPTICS(2023)

引用 0|浏览0
暂无评分
摘要
Electrotactile stimulation can be an attractive technology to restore tactile feedback in different application scenarios (e.g., virtual and augmented reality, tele-manipulation). This technology allows designing compact solutions with no mechanical elements that can integrate a high-density matrix of stimulation points. The present study introduced four novel multi-pad finger-electrode designs with different arrangements (two matrix and two circular) and shapes of active pads (producing sensation) and reference pads (ideally, no sensation produced below the pad). The electrodes were used to investigate the subjects' ability to spatially discriminate active pads within phalanges individually (6-9 pads) as well as across the full finger (18-19 pads). The tests were conducted in 12 subjects and the results showed that all designs led to high success rates when applied to the fingertip (70-81%). When tested on the full finger, the matrix and circular designs were characterized with similar performance (54-57%), and when the phalanges were analyzed individually, the spatial discrimination was best at the fingertip. Additionally, new approaches for faster amplitude calibration were proposed and tested, demonstrating that calibration duration can be reduced by approximately 40% compared to the standard approach of calibrating single pads individually. Finally, discrimination tests of dynamic tactile patterns were conducted using circular and matrix designs on the fingertip and full finger, respectively. The tests showed that the different patterns generated by the two arrangements could be clearly discriminated, especially in the case of full-finger matrix-style patterns. The present study, therefore, provides several important insights that are relevant when delivering tactile feedback to the finger using an electrotactile interface.
更多
查看译文
关键词
Electrotactile stimulation,spatial discrimination,haptic effects,touch sensations,virtual reality,tactile feedback,electrode design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要