Identification of a Druggable Site on GRP78 at the GRP78-SARS-CoV-2 Interface and Compounds to Disrupt that Interface

biorxiv(2023)

引用 0|浏览7
暂无评分
摘要
SARS-CoV-2, the virus that causes COVID-19, led to a global health emergency that claimed the lives of millions. Despite the widespread availability of vaccines, the virus continues to exist in the population in an endemic state which allows for the continued emergence of new variants. Most of the current vaccines target the spike glycoprotein interface of SARS-CoV-2, creating a selection pressure favoring viral immune evasion. Antivirals targeting other molecular interactions of SARS-CoV-2 can help slow viral evolution by providing orthogonal selection pressures on the virus. GRP78 is a host auxiliary factor that mediates binding of the SARS-CoV-2 spike protein to human cellular ACE2, the primary pathway of cell infection. As GRP78 forms a ternary complex with SARS-CoV-2 spike protein and ACE2, disrupting the formation of this complex is expected to hinder viral entry into host cells. Here, we developed a model of the GRP78-spike protein-ACE2 complex. We then used that model together with hot spot mapping of the GRP78 structure to identify the putative binding site for spike protein on GRP78. Next, we performed structure-based virtual screening of known drug/candidate drug libraries to identify binders to GRP78 that are expected to disrupt spike protein binding to the GRP78, and thereby preventing viral entry to the host cell. A subset of these compounds have previously been shown to have some activity against SARS-CoV-2. The identified hits are starting points for the further development of novel SARS-CoV-2 therapeutics, potentially serving as proof-of-concept for GRP78 as a potential drug target for other viruses. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要