An obligate aerobe adapts to hypoxia by hybridising fermentation with carbon storage

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览17
暂无评分
摘要
In soil ecosystems, obligately aerobic bacteria survive oxygen deprivation (hypoxia) by entering non-replicative persistent states. Little is known about how these bacteria rewire their metabolism to stay viable in these states. The model obligate aerobe Mycobacterium smegmatis maintains redox homeostasis during hypoxia by mediating fermentative hydrogen production. However, the fate of organic carbon during fermentation, and the associated remodeling of carbon metabolism, is unresolved. Here we systematically profiled the metabolism of M. smegmatis during aerobic growth, hypoxic persistence, and the transition between these states. Using differential isotope labelling, and paired metabolomics and proteomics, we observed rerouting of central carbon metabolism through the pentose phosphate pathway and Entner-Doudoroff pathway during hypoxia. We show that M. smegmatis excretes high levels of hydrogen concurrently with upregulating triacylglyceride synthases and accumulating glycerides as carbon stores. Using electron cryotomography (cryo-ET), we observed the presence of large spheroid structures consistent with the appearance of lipid droplets. Thus, in contrast to obligately and facultative anaerobic fermentative bacteria, M. smegmatis stores rather than excretes organic carbon during hypoxia. This novel hybrid metabolism likely provides a competitive advantage in resource-variable environments by allowing M. smegmatis to simultaneously dispose excess reductant during hypoxia and maintain carbon stores to rapidly resume growth upon reoxygenation. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
obligate aerobe adapts,fermentation,hypoxia,carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要