Pathways and parameters of sacral neuromodulation in rats

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY(2023)

引用 0|浏览5
暂无评分
摘要
The stimulation paradigm for sacral neuromodulation has remained largely unchanged since its inception. We sought to determine, in rats, whether stimulation-induced increases in bladder capacity correlated with the proportion of sensory pudendal (PudS) neurons at each stimulated location (L6, S1). If supported, this finding could guide the choice of stimulation side (left/right) and level (S2, S3, S4) in humans. Unexpectedly, we observed that acute stimulation at clinically relevant (low) amplitudes [1-1.5 x motor threshold (T-m)], did not increase bladder capacity, regardless of stimulus location (L6 or S1). More importantly for the ability to test our hypothesis, there was little anatomic variation, and S1 infrequently contributed nerve fibers to the PudS nerve. During mapping studies we noticed that large increases in PudS nerve activation occurred at amplitudes exceeding 2T(m). Thus, additional cystometric studies were conducted, this time with stimulation of the L6-S1 trunk, to examine further the relationship between stimulation amplitude and cystometric parameters. Stimulation at 1T(m) to 6T(m) evoked increases in bladder capacity and decreases in voiding efficiency that mirrored those produced by PudS nerve stimulation. Many animal studies involving electrical stimulation of nerves of the lower urinary tract use stimulation amplitudes that exceed those used clinically (similar to 1T(m)). Our results confirm that high amplitudes generate immediate changes in cystometric parameters; however, the relationship to low-amplitude chronic stimulation in humans remains unclear. Additional studies are needed to understand changes that occur with chronic stimulation, how these changes relate to therapeutic outcomes, and the contribution of specific nerve fibers to these changes. NEW & NOTEWORTHY Acute low-amplitude electrical stimulation of sacral nerve (sacral neuromodulation) did not increase bladder capacity in anesthetized CD, obese-prone, or obese-resistant rats. Increasing stimulation amplitude correlated with increases in bladder capacity and pudendal sensory nerve recruitment. It is unclear how the high-amplitude acute stimulation that is commonly used in animal experiments to generate immediate effects compares mechanistically to the chronic low-amplitude stimulation used clinically.
更多
查看译文
关键词
electrical stimulation,overactive bladder,pudendal nerve,rat,sacral neuromodulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要