Ultrathin Self-Powered Heavy-Metal-Free Cu-In-Se Quantum Dot Photodetectors for Wearable Health Monitoring.

ACS nano(2023)

引用 0|浏览8
暂无评分
摘要
Mechanically deformable photodetectors (PDs) are key device components for wearable health monitoring systems based on photoplethysmography (PPG). Achieving high detectivity, fast response time, and an ultrathin form factor in the PD is highly needed for next-generation wearable PPG systems. Self-powered operation without a bulky power-supply unit is also beneficial for point-of-care application. Here, we propose ultrathin self-powered PDs using heavy-metal-free Cu-In-Se quantum dots (QDs), which enable high-performance wearable PPG systems. Although the light-absorbing QD layer is extremely thin (∼40 nm), the developed PD exhibits excellent performance (specific detectivity: 2.10 × 10 Jones, linear dynamic range: 102 dB, and spectral range: 250-1050 nm at zero bias), which is comparable to that of conventional rigid QD-PDs employing thick Pb-chalcogenide QD layers. This is attributed to material and device strategies─materials that include Cu-In-Se QDs, a MoS-nanosheet-blended poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer, a ZnO nanoparticle electron transport layer, Ag and ITO electrodes, and an ultrathin form factor (∼120 nm except the electrodes) that enable excellent mechanical deformability. These allow the successful application of QD-PDs to a wearable system for real-time PPG monitoring, expanding their potential in the field of mobile bioelectronics.
更多
查看译文
关键词
heavy-metal-free quantumdots, wearable electronics, self-powered, photodetectors, photoplethysmography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要