GIS-based multicriteria and artificial neural network (ANN) investigation for the assessment of groundwater vulnerability and pollution hazard in the Braga shallow aquifer (Central Tunisia): A critical review of generic and modified DRASTIC models.

Journal of contaminant hydrology(2023)

引用 0|浏览1
暂无评分
摘要
Groundwater vulnerability and pollution hazard in the Braga shallow aquifer were assessed through an integrated GIS-based multicriteria analysis and Artificial Neural Network (ANN) approach, using DRASTIC and DRASTIC-LU models. The DRASTIC model integrates seven geological parameters. The DRASTIC-LU model includes an eighth parameter in addition to the previous ones. This parameter is the land use that represents the human source of groundwater pollution. The DRASTIC map showed four classes: very low (12.06%), low (81.88%), moderate (5.16%) and high (0.9%), where the vulnerability index ranged between 43 and 159. The DRASTIC-LU vulnerability index ranged between 53 and 204 and showed five classes: very low (3.10%), low (14.06%), moderate (17.11%), high (27.08%) and very high (38.65%). The DRASTIC-LU vulnerability map indicated that the high pollution risk is imposed by the intensive vegetable cultivation and the domestic wastewater. The pollution hazard index (PHI) was calculated based on the ANN modelling, using the land-use as an input and the vulnerability as a hidden layer. The DRASTIC model-based PHI map showed six classes: rare hazard (8.6%), very low (30.97%), low (6.18%), moderate (51.45%), high (2.43%) and very high (0.37%). While, The DRASTIC-LU model-based PHI map (PHILU) showed seven classes: rare hazard (2.91%), very low (11.9%), low (12.33%), moderate (13.78%), high (9.23%), very high (15.46%) and extremely hazardous (34.39%). The validation of these maps indicated that the DRSTIC-LU-based PHI is more reliable as it accurately identifies the hazardous zones.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要