Cosmological constraints from density-split clustering in the BOSS CMASS galaxy sample

Monthly Notices of the Royal Astronomical Society(2023)

Cited 0|Views24
No score
Abstract
We present a clustering analysis of the BOSS DR12 CMASS galaxy sample, combining measurements of the galaxy two-point correlation function and density-split clustering down to a scale of $1\,h^{-1}{\rm Mpc}$. Our theoretical framework is based on emulators trained on high-fidelity mock galaxy catalogues that forward model the cosmological dependence of the clustering statistics within an extended-$\Lambda$CDM framework, including redshift-space and Alcock-Paczynski distortions. Our base-$\Lambda$CDM analysis finds $\omega_{\rm cdm} = 0.1201\pm 0.0022$, $\sigma_8 = 0.792\pm 0.034$, and $n_s = 0.970\pm 0.018$, corresponding to $f\sigma_8 = 0.462\pm 0.020$ at $z \approx 0.525$, which is in agreement with Planck 2018 predictions and various clustering studies in the literature. We test single-parameter extensions to base-$\Lambda$CDM, varying the running of the spectral index, the dark energy equation of state, and the density of massless relic neutrinos, finding no compelling evidence for deviations from the base model. We model the galaxy-halo connection using a halo occupation distribution framework, finding signatures of environment-based assembly bias in the data. We validate our pipeline against mock catalogues that match the clustering and selection properties of CMASS, showing that we can recover unbiased cosmological constraints even with a volume 84 times larger than the one used in this study.
More
Translated text
Key words
boss cmass galaxy sample,cosmological constraints,clustering,density-split
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined