Cosmological constraints from density-split clustering in the BOSS CMASS galaxy sample

Monthly Notices of the Royal Astronomical Society(2023)

引用 0|浏览15
暂无评分
摘要
We present a clustering analysis of the BOSS DR12 CMASS galaxy sample, combining measurements of the galaxy two-point correlation function and density-split clustering down to a scale of $1\,h^{-1}{\rm Mpc}$. Our theoretical framework is based on emulators trained on high-fidelity mock galaxy catalogues that forward model the cosmological dependence of the clustering statistics within an extended-$\Lambda$CDM framework, including redshift-space and Alcock-Paczynski distortions. Our base-$\Lambda$CDM analysis finds $\omega_{\rm cdm} = 0.1201\pm 0.0022$, $\sigma_8 = 0.792\pm 0.034$, and $n_s = 0.970\pm 0.018$, corresponding to $f\sigma_8 = 0.462\pm 0.020$ at $z \approx 0.525$, which is in agreement with Planck 2018 predictions and various clustering studies in the literature. We test single-parameter extensions to base-$\Lambda$CDM, varying the running of the spectral index, the dark energy equation of state, and the density of massless relic neutrinos, finding no compelling evidence for deviations from the base model. We model the galaxy-halo connection using a halo occupation distribution framework, finding signatures of environment-based assembly bias in the data. We validate our pipeline against mock catalogues that match the clustering and selection properties of CMASS, showing that we can recover unbiased cosmological constraints even with a volume 84 times larger than the one used in this study.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要