Gravity Mediated Entanglement between Oscillators as Quantum Superposition of Geometries

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
Protocols for observing gravity induced entanglement typically comprise the interaction of two particles prepared either in a superposition of two discrete paths, or in a continuously delocalized (harmonic oscillator) state of motion. An important open question has been whether these two different approaches allow to draw the same conclusions on the quantum nature of gravity. To answer this question, we analyse using the path-integral approach a setup that contains both features: a superposition of two highly delocalized center of mass states. We conclude that the two usual protocols are of similar epistemological relevance. In both cases the appearance of entanglement, within linearised quantum gravity, is due to gravity being in a highly non-classical state: a superposition of distinct geometries.
更多
查看译文
关键词
quantum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要