Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization.

Yan Zhao,Haoming Sun, Yiwei Chen, Qiang Niu, Yiting Dong,Mei Li,Ye Yuan,Xiaojun Yang,Qingzhu Sun

mBio(2023)

引用 0|浏览12
暂无评分
摘要
Methicillin-resistant (MRSA) is a well-recognized cause of bacterial pneumonia in general. The gut microbiota and their metabolic byproducts act as important modulators of the gut-lung axis. Our investigation indicates a significant reduction in the abundance of butyrate producer unclassified_f__ within the lung and gut microbiota of MRSA-infected mice, as well as a significant decrease in the levels of butyrate in gut and serum. Additionally, supplementary sodium butyrate (NaB) significantly reduces bacteria colonization in the lung, suppresses pro-inflammatory cytokines expression, and enhances lung tissue morphology in MRSA-treated mice. The results of high-throughput 16S rDNA sequencing demonstrate that NaB reshapes the gut and lung microbiota by drastically reducing the abundance of potential pathogenic bacteria in the gut and cell motility-related bacteria in the lung, which are induced by MRSA. Moreover, NaB treatment augments the gut and circulating butyrate levels. Mechanistically, NaB promotes signal transducer and activator of transcription 1 (STAT1) acetylation and inhibits dimer STAT1 phosphorylation by reducing the binding of histone deacetylase 3 to STAT1, thereby altering alveolar macrophage polarization toward the M2 phenotype. Collectively, our findings suggest that NaB exerts a preventative effect against MRSA-induced pneumonia by enhancing the gut-lung microbiota and promoting macrophage polarization toward an anti-inflammatory M2 phenotype. The prophylactic administration of NaB emerges as a promising strategy for combating MRSA pneumonia. IMPORTANCE Pneumonia caused by methicillin-resistant (MRSA) continues to carry a high burden in terms of mortality. With the roles of gut microbiota in mediating lung diseases being gradually uncovered, the details of the molecular mechanism of the "gut-lung axis" mediated by beneficial microorganisms and small-molecule metabolites have gradually attracted the attention of researchers. However, further studies are still necessary to determine the efficacy of microbial-based interventions. Our findings indicate that sodium butyrate (NaB) alleviates MRSA-induced pulmonary inflammation by improving gut-lung microbiota and promoting M2 polarization of alveolar macrophages. Therefore, the preventive administration of NaB might be explored as an effective strategy to control MRSA pneumonia.
更多
查看译文
关键词
mrsa pneumonia,butyrate protects,alveolar macrophage m2 polarization,gut-lung
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要