Chrome Extension
WeChat Mini Program
Use on ChatGLM

Probing Energy-Level Alignment in Molecular Multilayers by Frequency-Modulation Electrostatic Force Microscopy under Tapping-Mode-Combined Fowler-Nordheim Tunneling Spectroscopy

ACS APPLIED MATERIALS & INTERFACES(2023)

Cited 0|Views8
No score
Abstract
The alignment of molecular electronic levels in a molecular multilayer is of crucial importance to realize desired functions for molecular devices. Amplitude-modulation-feedback frequency-modulation electrostatic force microscopy combined with Fowler-Nordheim tunneling spectroscopy is utilized as a probe for the energy-level alignment in an organic multilayer. Bias-dependent electrostatic force spectra were examined for bilayers including a Ru complex as a benchmark multilayer system. Electrostatic properties in the low-bias region were captured well by a single-capacitor model, which indicates weak coupling at the bilayer interface between the Ru complex and self-assembled monolayer. In contrast, in the high-bias region, significant disagreement with the expected electrostatic force was recognized for the bilayers and evaluated as the loss of electrostatic energy through the Fowler-Nordheim tunneling process. Alignment of the lowest unoccupied molecular orbital (LUMO) level of the Ru complex was determined by Fowler-Nordheim emission through resonant tunneling. These results indicate an effective method to probe level alignment at interfaces inside multilayers and to provide the partition factor beta that depicts a divided electric field.
More
Translated text
Key words
Ru complex,molecular multilayer,electrostatic force microscopy,Fowler-Nordheim tunneling,molecular-level alignment
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined