Satellite-Based Distribution of Inverse Altitude Effect of Global Water Vapor Isotopes: Potential Influences on Isotopes in Climate Proxies

Gahong Yang, Yanqiong Xiao, Shengjie Wang, Yuqing Qian, Hongyang Li, Mingjun Zhang

Remote Sensing(2023)

引用 0|浏览11
暂无评分
摘要
The widely-distributed altitude effect of stable isotopes in meteoric water, i.e., the negative correlation between stable hydrogen (or oxygen) isotope compositions and altitude, is the theoretical basis of isotope paleoaltimetry in climate proxies. However, as many recent local observations have indicated, the inverse altitude effect (IAE) in meteoric water does exist, and the regime controlling IAE is still unclear on a global scale. Based on a remote sensing product of the Infrared Atmospheric Sounding Interferometer (IASI), we examined the global frequency of IAE in water vapor isotopes, and the possible influences on isotopes in precipitation and climate proxies. According to the satellite-based δD values in water vapor at 2950 m and 4220 m above sea level, frequent IAEs are observed on a daily scale in North Africa, West and Central Asia, and North America, and IAEs are more likely to occur during the daytime than during the nighttime. We also converted water vapor δD to precipitation δD via equilibrium fractionation and then analyzed the potential presence of IAE in precipitation, which is more associated with climate proxies, and found that the spatial and temporal patterns of water vapor can be transferred to the precipitation. In addition, different thresholds of δD difference were also tested to understand the impact of random errors. The potential uncertainty of the changing isotope and altitude gradient should be considered in paleo-altitude reconstructions.
更多
查看译文
关键词
stable isotopes,water vapor,inverse altitude effect,moisture transport,precipitation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要