Microstructure-Informed Myelin Mapping (MIMM) from Gradient Echo MRI using Stochastic Matching Pursuit

medrxiv(2023)

引用 0|浏览16
暂无评分
摘要
Quantification of the myelin content of the white matter is important for studying demyelination in neurodegenerative diseases such as Multiple Sclerosis (MS), particularly for longitudinal monitoring. A novel noninvasive MRI method, called Microstructure-Informed Myelin Mapping (MIMM), is developed to quantify the myelin volume fraction (MVF) by utilizing a multi gradient echo sequence (mGRE) and a detailed biophysical model of tissue microstructure. Myelin is modeled as anisotropic negative susceptibility source based on the Hollow Cylindrical Fiber Model (HCFM), and iron as isotropic positive susceptibility source in the extracellular region. Voxels with a range of biophysical parameters are simulated to create a dictionary of MR echo time magnitude signals and total susceptibility values. MRI signals measured using a mGRE sequence are then matched voxel-by-voxel to the created dictionary to obtain the spatial distributions of myelin and iron. Three different MIMM versions are presented to deal with the fiber orientation dependent susceptibility effects of the myelin sheaths: a basic variation, which assumes fiber orientation is an unknown to fit, two orientation informed variations, which assume the fiber orientation distribution is available either from a separate diffusion tensor imaging (DTI) acquisition or from a DTI atlas based fiber orientation map. While all showed a significant linear correlation with the reference method based on T2-relaxometry (p < 0.0001), DTI orientation informed and atlas orientation informed variations reduced overestimation at white matter tracts compared to the basic variation. Finally, the implications and usefulness of attaining an additional iron susceptibility distribution map are discussed. Highlights ### Competing Interest Statement A.V.D., P.S. and Y.W. are inventors of QSM-related patents issued to Cornell University. P.S. and Y.W. hold equity in Medimagemetric LLC. T.D.N. and P.S. are paid consultants for Medimagemetric LLC. ### Funding Statement This work was supported in part by research grants from the NIH: R01NS105144, R01NS090464, R01NS095562, S10OD021782, R01HL151686, and National MS Society: RG-1602-07671. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes The details of the IRB/oversight body that provided approval or exemption for the research described are given below: IRB of Weill Cornell Medicine gave ethical approval for this work. I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable. Yes All images used in this work are de-identified to protect privacy of human participants. Code is available at https://github.com/MertSisman/MIMM. An example dataset is provided at https://zenodo.org/record/8193673. Remaining data is available to interested researchers upon reasonable request.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要